Complexation of Alkyl Glycosides with Cyclic Resorcinol Tetramer in Apolar Organic Media:

Geometrical Requirement for the Intracomplex Sugar-Sugar Interaction

Yasuaki Kikuchi, Hiroo Toi,† and Yasuhiro Aoyama*,†

Department of Industrial Chemistry, Hachinohe National College of Technology, Tamonoki, Hachinohe, Aomori 031 †Section of Bioorganic Chemistry, Department of Bioengineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-21

(Received January 11, 1993)

Synopsis. ¹H NMR and circular dichroism spectroscopic investigation of the complexation of octyl glycoside derivatives of various monosaccharides as guests with cyclic resorcinol tetramer as host in chloroform indicates that the complexation-responsible intracomplex sugar–sugar interaction is markedly dependent on the stereochemistry of the sugar glycosides.

We have recently shown that cyclic resorcinol tetramer 1 exhibits a novel binding behavior toward a lipophilic glucose derivative. 1) Host 1 binds four molecules of octvl α - or β -glucopyranoside (2α and 2β) in chloroform in a highly cooperative manner with a Hill coefficient $n \approx 4$. The suggested structure of the 1:4 (host to guest) complex is schematically shown in structure 3. The host-guest hydrogen bonding at the four unit-binding sites of the host (A—D) gives rise to a 1:4 stoichiometry and the intracomplex guest-guest hydrogen bonding involving the 2- and 6-OH groups provides the orgin of the remarkable cooperativity $(n\approx 4)$ in the guest binding. In the present work, we have investigated the complexation behaviors of a number of other monosaccharides. We report here that the cooperative binding involving a novel sugar-sugar interaction is specific to the glucose derivative.

Result

In addition to those of 2-deoxy-D-glucose (6) and D-xylose (9) previously reported, 1 octyl glycosides, all in the α -configuration, of D-mannose (4), D-galactose (5), D-ribose (7), and D-arabinose (8) were newly prepared (Chart 1). All of them are readily soluble in chloroform. The complexation between host 1 and guests 4—9 was monitored by circular dichroism (CD) and 1 H NMR spectroscopy.

A CHCl₃ solution of 1 (1.0 mM, 1 M=1 mol dm⁻³) and mannoside 4 ([4] \leq 30 mM) exhibited induced CD with first (longer wavelength) negative and second (shorter wavelength) positive Cotton effects. On the other hand, at a sufficiently higher concentration of 4 was observed a practically nonsplit positive Cotton effect in a longer wavelength region. The actual spectra at [4]=20 and 300 mM are shown in Figs. 1a and 1b. In the inset of this Figure is shown the correlation between θ (observed ellipticity) at 305 nm and [4] in a range $0\leq$ [4] \leq 80 mM. The ¹H NMR spectra for a series of so-

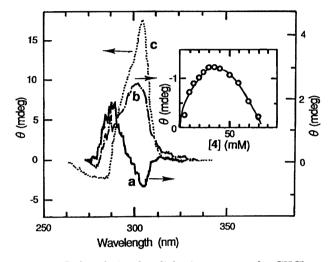


Fig. 1. Induced circular dichroism spectra for CHCl₃ solutions (0.1-cm path length) of host **1** (1.0 mM) and a guest: (a) guest=**4** (20 mM), (b) guest is **4** (300 mM), and (c) guest is **2** β (80 mM). Inset: correlation of θ at 305 nm and [4].

lutions of 1 (1.0 mM) and guest 4 also showed a biphasic behavior. At lower guest concentrations ([4]<30 mM) there were observed upfield-shifted CH-proton resonances of the guest at $\delta \approx 0$. The intergration of these resonances changed with changing [4], while the chemical shifts remained practically unaffected. At higher guest concentrations ([4]=120 mM), these high-field resonances of the guest disappeared with concomitant shifts of the host-proton resonances; in particular, the OH-protons and the higher-field component of the aromatic protons underwent upfield (ca. 1 ppm) and downfield (ca. 0.15 ppm) shifts, respectively. The previously studied 1:4 glucoside complex 1.42 (refer to structure 3)1) showed similar trends in the CD and NMR spectra (a simple, i.e., nonsplit, positive Cotton effect (Fig. 1c) and guest-induced shifts of the host-proton resonances) as observed here in the presence of a sufficiently excess amount of 4. On the other hand, the split Cotton effects and the upfield-shifted guest-proton resonances observed at lower [4] are characteristic of the 1:1 1sugar complexes, where sugar is bound in the cavity of the host. $^{2,3)}$

A CHCl₃ solution of host **1** and galactoside **5** showed no induced CD. In addition, in the ¹H NMR spectra

Chart 1.

neither host-induced upfield-shifted resonances for the guest nor guest-induced shifts for the host protons were observed. This was also the case for aldopentose derivatives 7 and 8. These results indicate that galactoside 5 and aldopentosides 7 and 8 are hardly bound to host 1. This was also confirmed by a competitive method. A CHCl₃ solution of host 1 (1.0 mM) and glucoside 2β (20 mM) exhibited a positive Cotton effect with $\theta=17.4$ mdeg at 305 nm. The CD intensity at 305 nm for a ternary system of $\mathbf{1}(1.0 \text{ mM})$, $\mathbf{2}\beta$ (20 mM), and $\mathbf{5}$, $\mathbf{6}$, **7**, **8**, or **9** (20 mM) was \geq 98, ca. 95,1 \geq 98, \geq 97, or $\geq 97\%$, respectively, of that for the binary system of 1 (1.0 mM) and 2β (20 mM). These results indicate that the binding of guests 5-9, if any, is too weak to compete with glucoside 2β . The relative binding ability of mannoside 4 was evaluated in a similar manner. A solution of 1 (1.0 mM) and mannoside 4 (20 mM) exhibits a negative Cotton effect with $\theta = -1.0$ mdeg at 305 nm (Fig. 1a), as opposed to a positive one at this wavelength for glucoside 2β (vide infra). The observed ellipticity for a ternary mixture of 1 (1.0 mM), 2β (20 mM), and 4 (20 mM) was $\theta = 13.1$ mdeg, i.e., 75% of that (17.4 mdeg) for the binary system of 1 ans 2β . A qualitative implication of this result is that the glucoside/manoside competition is in favor of the former.

Discussion

Both CD and $^1\mathrm{H}\,\mathrm{NMR}$ spectroscopy suggests that the complexation of host 1 and mannoside 4 is at least biphasic. Although a 1:4 (host to guest) complex 1.44 plausibly results at higher guest concentrations, intermediate complex(es) 1.x4 (x \leq 3) accumulates at lower

guest concentrations. This is in marked contrast to the formation of glucoside-complex $(1\cdot 42)$, where host 1 simultaneously binds four molecules of 2 in an essentially single step owing to a very strong cooperativity $(n\approx 4)$ in the 2-binding process. Pather surprising is the behavior of galactoside 5. It forms neither 1:4 nor 1:1 host-guest complex, in spite of its apparent similarity to glucoside 2 and mannoside 4. These results, coupled with the relative binding abilities of 2>4, indicate that cooperativity in the guest binding dramatically decreases on going from glucoside 2 through mannoside 4 to galactoside 5.

We have previously demonstrated that the cooperativity in the binding of glucoside 2 arises from intracomplex intermolcular hydrogen bonding involving the 2-OH and 6-OH groups in adjacent guest molecules (refer to structure 3).1) This conclusion was based on the finding that neither 2-deoxyglucoside 6 having no 2-OH group nor xyloside 9 having no 6-OH group forms stable complex with host 1. The present findings not only further reinforce this conclusion but also newly uncover the following points. (1) The presence of 6-OH group is indeed essential. None of aldopentose derivatives 7—9 having various stereochemisty of the 2-, 3-, and 4-OH groups are readily bound. (2) The stereochemistry of the 2-OH group is important. Thus, mannoside 4 having axial 2-OH exhibits a less pronounced cooperativity as compared with that for glucoside 2 where 2-OH is equatorial. (3) The trans or the equatorial-equatorial stereochemistry for the 3-OH and 4-OH groups of glycoside guest is also important.⁵⁾ Readily bound glucoside 2 has such a trans stereochemisty, while the corresponding groups in hardly bound galactoside 5 is cis or axial-equatorial.

To summarize, the affinities of octyl glycoside derivatives of otherwise closely related aldohexoses and aldopentoses decrease dramatically in the order glucoside 2>mannoside 4>galactoside $5\cong$ aldopentosides \cong 0. This is because the complexation-responsible hostguest and guest-guest interactions are markedly dependent on the stereochemisty of the OH groups. Phenomenologically, it is interesting to note a solvophobicity/solvophilicity control of the selectivity. The glucose structure is least suited for the 1:1 complexation with host 1. In fact, glucose shows the lowest affinity to 1 in the extraction of monosaccharides from water into CCl₄ upon formation of a 1:1 1-sugar complex.³⁾ In marked contrast, the glucose derivative 2 shows the highest affinity to 1 in the homogeneous binding of lipophilic octyl glycoside derivatives in chloroform, where potential guest-guest interaction becomes more important. The implication of this work may be two-fold. First, a slight difference in stereochemisty does lead to remarkable discrimination among otherwise closely related sugars. Second, direct sugar-sugar interaction does take place in a highly selective manner. Hakomori, et al., have recently demonstrated that cell-cell adhesion is initiated by direct interaction of the oligosaccharides on the cell surfaces.⁶⁾

Experimental

Preparation of octyl glycosides **5**—**9** has been described. Octyl α -D-mannopyranoside (**4**) was obtained in a similar manner. Thus, a mixture of mannose (15 g) and 1-octanol (200 ml) containing concd hydrochloric acid (1.25%)

by weight) was stirred at 50—60 °C for 5 d. Workup and chromatography on silica gel with acetone as eluant gave the desired compound 4, which was recrystallized from ethyl acetate: yield 6.9 g (21%); mp 54—55 °C. The $^{13}{\rm C\,NMR}$ spectrum for a CDCl₃ solution showed a single resonance for 1-C at $\delta\!=\!100.1$, thus confirming the $\alpha\!-\!$ configuration. $^{7)}$

¹H NMR and CD spectra were taken as described, using a JEOL JNM EX-400 spectrometer and a JASCO J-500C spectropolarimeter, respectively.¹⁾

References

- 1) Y. Kikuchi, Y. Tanaka, S. Sutarto, K. Kobayashi, H. Toi, and Y. Aoyama, J. Am. Chem. Soc., 114, 10302 (1992).
- Y. Kikuchi, K. Kobayashi, and Y. Aoyama, J. Am. Chem. Soc., 114, 1351 (1992).
- 3) Y. Aoyama, Y. Tanaka, and S. Sugahara, J. Am. Chem. Soc., 111, 5397 (1989).
- 4) There is no significant difference in the binding abilities of glucoside epimers 2α and 2β to host 1; $K=1.9\times10^8$ and 3.2×10^8 M⁻⁴ for 2α and 2β , respectively.¹⁾ On the other hand, the estimated binding constant for the equilibrium, $1+44\rightleftharpoons1\cdot44$, is $K=10^4-10^5$ M⁻⁴. This is based on computer simulation of the buildup of 1:4 complex $1\cdot44$ (Fig. 1).
- 5) Investigation of the binding abilities of *cis* and *trans*-1, 2-cyclohexanediol indicates that the former is better bound to host 1 than the latter by a factor of 2.5:Y. Kikuchi, Y. Kato, Y. Tanaka, H. Toi, and Y. Aoyama, *J. Am. Chem. Soc.*, 113, 1349 (1991).
- a) I. Eggens, B. Fenderson, T. Toyokuni, B. Dean, M. Stroud; and S. Hakomori, J. Biol. Chem., 264, 9476 (1989);
 b) N. Kojima and S. Hakomori, J. Biol. Chem., 264, 20159 (1989).
- 7) J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972), pp. 458—468.